9 research outputs found

    Signal Processing for Compressed Sensing Multiuser Detection

    Get PDF
    The era of human based communication was longly believed to be the main driver for the development of communication systems. Already nowadays we observe that other types of communication impact the discussions of how future communication system will look like. One emerging technology in this direction is machine to machine (M2M) communication. M2M addresses the communication between autonomous entities without human interaction in mind. A very challenging aspect is the fact that M2M strongly differ from what communication system were designed for. Compared to human based communication, M2M is often characterized by small and sporadic uplink transmissions with limited data-rate constraints. While current communication systems can cope with several 100 transmissions, M2M envisions a massive number of devices that simultaneously communicate to a central base-station. Therefore, future communication systems need to be equipped with novel technologies facilitating the aggregation of massive M2M. The key design challenge lies in the efficient design of medium access technologies that allows for efficient communication with small data packets. Further, novel physical layer aspects have to be considered in order to reliable detect the massive uplink communication. Within this thesis physical layer concepts are introduced for a novel medium access technology tailored to the demands of sporadic M2M. This concept combines advances from the field of sporadic signal processing and communications. The main idea is to exploit the sporadic structure of the M2M traffic to design physical layer algorithms utilizing this side information. This concept considers that the base-station has to jointly detect the activity and the data of the M2M nodes. The whole framework of joint activity and data detection in sporadic M2M is known as Compressed Sensing Multiuser Detection (CS-MUD). This thesis introduces new physical layer concepts for CS-MUD. One important aspect is the question of how the activity detection impacts the data detection. It is shown that activity errors have a fundamentally different impact on the underlying communication system than data errors have. To address this impact, this thesis introduces new algorithms that aim at controlling or even avoiding the activity errors in a system. It is shown that a separate activity and data detection is a possible approach to control activity errors in M2M. This becomes possible by considering the activity detection task in a Bayesian framework based on soft activity information. This concept allows maintaining a constant and predictable activity error rate in a system. Beyond separate activity and data detection, the joint activity and data detection problem is addressed. Here a novel detector based on message passing is introduced. The main driver for this concept is the extrinsic information exchange between different entities being part of a graphical representation of the whole estimation problem. It can be shown that this detector is superior to state-of-the-art concepts for CS-MUD. Besides analyzing the concepts introduced simulatively, this thesis also shows an implementation of CS-MUD on a hardware demonstrator platform using the algorithms developed within this thesis. This implementation validates that the advantages of CS-MUD via over-the-air transmissions and measurements under practical constraints

    Signalverarbeitung fĂĽr Compressed Sensing basierte Mehrnutzerdetektion

    No full text
    The era of human based communication was longly believed to be the main driver for the development of communication systems. Already nowadays we observe that other types of communication impact the discussions of how future communication system will look like. One emerging technology in this direction is machine to machine (M2M) communication. M2M addresses the communication between autonomous entities without human interaction in mind. A very challenging aspect is the fact that M2M strongly differ from what communication system were designed for. Compared to human based communication, M2M is often characterized by small and sporadic uplink transmissions with limited data-rate constraints. While current communication systems can cope with several 100 transmissions, M2M envisions a massive number of devices that simultaneously communicate to a central base-station. Therefore, future communication systems need to be equipped with novel technologies facilitating the aggregation of massive M2M. The key design challenge lies in the efficient design of medium access technologies that allows for efficient communication with small data packets. Further, novel physical layer aspects have to be considered in order to reliable detect the massive uplink communication. Within this thesis physical layer concepts are introduced for a novel medium access technology tailored to the demands of sporadic M2M. This concept combines advances from the field of sporadic signal processing and communications. The main idea is to exploit the sporadic structure of the M2M traffic to design physical layer algorithms utilizing this side information. This concept considers that the base-station has to jointly detect the activity and the data of the M2M nodes. The whole framework of joint activity and data detection in sporadic M2M is known as Compressed Sensing Multiuser Detection (CS-MUD). This thesis introduces new physical layer concepts for CS-MUD. One important aspect is the question of how the activity detection impacts the data detection. It is shown that activity errors have a fundamentally different impact on the underlying communication system than data errors have. To address this impact, this thesis introduces new algorithms that aim at controlling or even avoiding the activity errors in a system. It is shown that a separate activity and data detection is a possible approach to control activity errors in M2M. This becomes possible by considering the activity detection task in a Bayesian framework based on soft activity information. This concept allows maintaining a constant and predictable activity error rate in a system. Beyond separate activity and data detection, the joint activity and data detection problem is addressed. Here a novel detector based on message passing is introduced. The main driver for this concept is the extrinsic information exchange between different entities being part of a graphical representation of the whole estimation problem. It can be shown that this detector is superior to state-of-the-art concepts for CS-MUD. Besides analyzing the concepts introduced simulatively, this thesis also shows an implementation of CS-MUD on a hardware demonstrator platform using the algorithms developed within this thesis. This implementation validates that the advantages of CS-MUD via over-the-air transmissions and measurements under practical constraints

    Joint activity and data detection for machine to machine communication via bayes risk optimization

    No full text
    Abstract—Performing joint detection of activity and data is a promising approach to reduce management overhead in Machineto-Machine communication. However, erroneous activity detection has severe impacts on the system performance. Estimating an active node or user erroneously to be inactive results in a loss of data. To optimally balance activity and data detection, we derive a novel joint activity and data detector that bases on the minimization of the Bayes Risk. The Bayes Risk detector allows to control error rates with respect to the activity detection dynamically by a parameter that can be controlled by higher layers. In this paper we derive the Bayes Risk detector for a general linear system and present exemplary results for a specific Machine-to-Machine communication scenario. I

    Compressed sensing bayes risk minimization for under-determined systems via sphere detection

    No full text
    Abstract—The application of Compresses Sensing is a promising physical layer technology for the joint activity and data detection of signals. Detecting the activity pattern correctly has severe impact on the system performance and is therefore of major concern. In contrast to previous work, in this paper we optimize joint activity and data detection in under-determined systems by minimizing the Bayes-Risk for erroneous activity detection. We formulate a new Compressed Sensing Bayes-Risk detector which directly allows to influence error rates at the activity detection dynamically by a parameter that can be controlled at higher layers. We derive the detector for a general linear system and show that our detector outperforms classical Compressed Sensing approaches by investigating an overloaded CDMA system. I

    Nachhaltige Aquakultur in Deutschland - Chancen und Herausforderungen

    No full text
    "Forschen für die Zukunft unserer Gewässer" ist das Leitmotiv des IGB. Dazu gehört die objektive und evidenzbasierte Information und Beratung von Politik, Behörden, Verbänden, Wirtschaft, Bildungseinrichtungen und der Öffentlichkeit. Im Rahmen seiner eigenen Schriftenreihe IGB Outlines, zu denen auch der IGB Policy Brief gehört, macht das Institut forschungsbasiertes Wissen kostenfrei für die Öffentlichkeit zugänglich. Für die Inhalte der Beiträge sind die jeweiligen Autor*innen verantwortlich
    corecore